Cosine Tuning Minimizes Motor Errors
نویسنده
چکیده
Cosine tuning is ubiquitous in the motor system, yet a satisfying explanation of its origin is lacking. Here we argue that cosine tuning minimizes expected errors in force production, which makes it a natural choice for activating muscles and neurons in the final stages of motor processing. Our results are based on the empirically observed scaling of neuromotor noise, whose standard deviation is a linear function of the mean. Such scaling predicts a reduction of net force errors when redundant actuators pull in the same direction. We confirm this prediction by comparing forces produced with one versus two hands and generalize it across directions. Under the resulting neuromotor noise model, we prove that the optimal activation profile is a (possibly truncated) cosine--for arbitrary dimensionality of the workspace, distribution of force directions, correlated or uncorrelated noise, with or without a separate cocontraction command. The model predicts a negative force bias, truncated cosine tuning at low muscle cocontraction levels, and misalignment of preferred directions and lines of action for nonuniform muscle distributions. All predictions are supported by experimental data.
منابع مشابه
Directional tuning profiles of motor cortical cells.
The directional tuning profiles of motor cortical cells are commonly described by a cosine tuning function with three adjustable parameters (Georgopoulos, A.P., Kalaska. J.F., Crutcher, M.D., Caminiti, R., Massey, J.T., 1982. On the relations between the direction of two-dimensional (2D) arm movements and cell discharge in primate motor cortex. J. Neurosci. 2, 1527-1537). In this study the vari...
متن کاملOptimal control of redundant muscles in step-tracking wrist movements.
An important question in motor neuroscience is how the nervous system controls the spatiotemporal activation patterns of redundant muscles in generating accurate movements. The redundant muscles may not only underlie the flexibility of our movements but also pose the challenging problem of how to select a specific sequence of muscle activation from the huge number of possible activations. Here,...
متن کاملDirectional tuning curves, elementary movement detectors, and the estimation of the direction of visual movement.
Both the insect brain and the vertebrate retina detect visual movement with neurons having broad, cosine-shaped directional tuning curves oriented in either of two perpendicular directions. This article shows that this arrangement can lead to isotropic estimates of the direction of movement: for any direction the estimate is unbiased (no systematic errors) and equally accurate (constant random ...
متن کاملAdaptation to visuomotor rotation through interaction between posterior parietal and motor cortical areas.
Studying how motor adaptation to visuomotor rotation for one reach direction generalizes to other reach directions can provide insight into how visuomotor maps are represented and learned in the brain. Previous psychophysical studies have concluded that postadaptation generalization is restricted to a narrow range of directions around the training direction. A population-coding model that updat...
متن کاملSpline-based non-parametric regression for periodic functions and its application to directional tuning of neurons.
The activity of neurons in the brain often varies systematically with some quantitative feature of a stimulus or action. A well-known example is the tendency of the firing rates of neurons in the primary motor cortex to vary with the direction of a subject's arm or wrist movement. When this movement is constrained to vary in only two dimensions, the direction of movement may be characterized by...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neural computation
دوره 14 6 شماره
صفحات -
تاریخ انتشار 2002